

Autopilot System SAP2000

for computer controlled driving of cars on test stands

precise · reliable · efficient

Objective measuring procedure = clear results

ECE emissions cycle, generated by STÄHLE AUTOPILOT

FTP/EPA emissions cycle, generated by STÄHLE AUTOPILOT

The ideal robot test driver for research, development and quality control

After many years of development work, the new generation of robot drivers – exemplified by the **AUTOPILOT SAP2000** – can take advantage of control software that has now fulfilled in reality what was once set up as visionary targets.

Targets

- Human driving style with comparable emissions results
- High driving accuracy
- Selectable driving styles
- Ultra high reproducibility

Reality

- The emission values are within the central cluster of the results obtained from test cycles driven by human drivers
- Typical driving accuracy is ≤ 0,25 km/h in "high-accurate" driving style mode
- Driving style options: smooth accurate high-accurate
- The typical distance error in an 11 kilometer driving cycle is $\leq 2 \text{ m}$

AUTOPILOT SAP2000

for computer-controlled driving on chassis dynamometers

Programming driving cycles

Selecting starting point

The AUTOPILOT SAP2000

can be linked to emission benches, chassis dynamometers and host computers. The drive mechanism is suitable for any climate and durability testing. Thus, the same mechanism can be used for a wide variety of testings without the necessity for modification.

- Emmission measurements
- Acoustic measurements
- Durability testing mileage accumulation
- Transmission testing
- Calibration of engine control systems
- Climate measurements
- Correlation measurements
- Running-losses measurements

Features + technical specifications

Features

- Stand-alone system
- Can be installed on the driver`s seat without any modification to the vehicle (approx. 8 min.)
- Hardware and software designed for one-man operation
- Self-learning function in special selflearn cycle
- Alternative: Learn without run no learn cycle required hereby
- Constant control behavior during tests
- Alternative: Adaptive speed control
- Mechanism designed for continuous operation and any climate
- Automatic compensation for installation tolerances between robot and accelerator pedal
- Continuous learning of the clutch bite point when clutch is released during start-up (compensates for clutch wear)
- Highest safety standards:

Without power

- · Accelerator pedal released
- Brake pedal released
- Clutch pedal depressed (disclutched)
- Driving style options
 - smooth accurate high-accurate
- Additional selections of the control strategy for target optimizations for example CO² or NO_X minimizing

Technical specifications Robot driver SAP2000

Total weight 30 kg approx.

Component weight max. 16 kg

Control voltage 24 V

Working temperature -40° C...+80°C

Accelerator actuator

Actuation system electrical
Stroke max. 150 mm
Force max. 100 N
Velocity max. 0.55 m/s

Brake actuator

Actuation system electrical
Stroke max. 150 mm
Force max. 350 N
Velocity max. 0.3 m/s

Clutch actuator

Actuation system electrical
Stroke max. 200 mm
Force max. 200 N
Velocity max. 0.35 m/s

Shift actuator

Actuation system electrical
Shift Stroke (X-axis) max. 250 mm
Lateral Stroke (Y-axis) max. 200 mm
Force max. 250 N
Velocity max. 0.6 m/s

Variations and options

Variations

SAP2000	Ε	M	MP	AC1
Accelerator - Brake - Clutch	+	+	+	+
Gear shift arm left-hand drive	+	+	+	+
Gear shift arm right-hand drive	0	0	0	0
Gear shift arm left-/right-hand drive	O	0	0	0
Gear shift arm steering-column shift	O	0	0	0
Keyboy SBX/SCX (rotary) fail - safe	0	0	0	0
Keyboy SPX (plush-button) fail - safe	0	0	0	0
Pedal touch detection switch accelerator & brake	+	0	-	_
Adapter for steering-column shift N - D	О	0	0	0
Actuator for steering wheel paddle +/- shifting	O	0	0	0
Steering actuator systems	0	0	0	0
Safety brake actuator systems	0	0	0	0
Gear shift lever release	0	0	0	0
Gear shift force measurement & control	0	0	0	0
Truck adapter	0	0	0	0
Hand-held terminal	+	+	+	+
Universal vehicle self-learn cycle (basic)	+	+	+	-
Universal vehicle self-learn cycle with Auto tune	+	+	-	-
Learn without Run	+	+	-	_
Adaptive speed control during test run	+	+	-	_
Human drive style speed control	+	+	-	_
Selectable human drive styles	+	-	-	-
Manual driving mode	+	+	+	+
Manual Set-point mode	+	+	+	-
Braking via chassis dynamometer	+	+	+	_
Road gradient output to chassis dynamometer	+	+	+	-
Data acquisition & Graphic cycle protocol	+	+	+	-
Hybrid & Fuel Cell & electric engine support	+	+	+	+
Stop & Start engine support	+	+	+	+
WINDOWS user interface WIN32	+	+	+	+
Analog inputs for MAP / tractive effort	+	+	+	-
Adapter for seat rail mounting	0	0	Ο	0
Seat belt fixture	0	0	0	0

- emission test

- mileage accumulation / durability testing mileage accumulation with PID controller

- optional
- not possible

Optional hardware

- Shift arm for full range column shifting
- RHD and LHD shift actuators
- Dash board shifter set
- Shift release mechanism
- Push/Pull actuator for shift lever
- Shift unlock / release actuators
- Shift Force measurement
- Pedal force measurement
- 2-axis push-button actuator for steering wheel +/- and paddle shift actuation
- 1/2-axis actuator for tap shift lever at steering column
- Truck adapter set
- Truck Range select and splitter gear select actuation
- Ignition key actuators: Keyboys for rotary or push-button style ignition keys
- Universal push-button actuators
- Steering actuators
- Safety brake actuators
- Seat rail mounting device
- Autonomous driving package for driving on proving grounds
- Vehicle motion sensor

Seat Rail Adapter

Vehicle Motion Sensor

Speed Measuring Wheel

Keyboy SCX (rotary)

Keyboy SPX (push-button)

Shift Paddles Actuator

Optional system interfaces

- Host computer interface: Extended AK protocol - serial / TCP/IP
- Hybrid bit parallel & analog interface
- Fieldbus Interface to vehicle on-board data through OBD / CAN interface
- Fieldbus Interface to chassis dyno for LifeData exchange
- Fieldbus Interface to data acquisition system
- Interface to refueling system for refueling process defined by cycle and fuel tank level
- UDP or OPC Server/Client interface
- Customized interfaces on request

Company portrait + Product range

Company portrait

STÄHLE GmbH was founded in 1987. It is a high-performance family-run enterprise with CAM-supported CNC machines. Development of hardware and software goes on at the engineering offices of Ing. Büro Kurt Stähle. Design work is performed at 3D-CAD work stations with FE optimization. We see ourselves as being conservative only in the sense of being obligated to our customers to be a competent and reliable partner.

Further products

Autopilot System SAP-RAPID

Autopilot SAP-RAPID-HE-TRUCK

Autopilot System SMC2000

Autopilot SAP2000 LC

Throttle Actuator AP-G F.10

Throttle Actuator AP-GB/2.10

Throttle Actuator AP-G FR.10

Throttle Actuator MC-GS.10

Robot Shifter SA-RAPID

Robot Shifter AP-SA

Steering System SSP3000

Steering System SSP-FrontFree

Proving Ground Driving System SfpHybrid

5/2015. Technical modifications reserved

STÄHLE Robot Drivers in use world-wide.

STÄHLE GmbH - Maybachstraße 12 · D-71299 Wimsheim · Germany Tel. +49(0)70 44-9 15 61-0 · Fax +49(0)70 44-9 15 61-29 Internet: www.stahle.com · Email: info@stahle.com